Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Med ; 27(11): 2012-2024, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526091

ABSTRACT

The efficacy of convalescent plasma for coronavirus disease 2019 (COVID-19) is unclear. Although most randomized controlled trials have shown negative results, uncontrolled studies have suggested that the antibody content could influence patient outcomes. We conducted an open-label, randomized controlled trial of convalescent plasma for adults with COVID-19 receiving oxygen within 12 d of respiratory symptom onset ( NCT04348656 ). Patients were allocated 2:1 to 500 ml of convalescent plasma or standard of care. The composite primary outcome was intubation or death by 30 d. Exploratory analyses of the effect of convalescent plasma antibodies on the primary outcome was assessed by logistic regression. The trial was terminated at 78% of planned enrollment after meeting stopping criteria for futility. In total, 940 patients were randomized, and 921 patients were included in the intention-to-treat analysis. Intubation or death occurred in 199/614 (32.4%) patients in the convalescent plasma arm and 86/307 (28.0%) patients in the standard of care arm-relative risk (RR) = 1.16 (95% confidence interval (CI) 0.94-1.43, P = 0.18). Patients in the convalescent plasma arm had more serious adverse events (33.4% versus 26.4%; RR = 1.27, 95% CI 1.02-1.57, P = 0.034). The antibody content significantly modulated the therapeutic effect of convalescent plasma. In multivariate analysis, each standardized log increase in neutralization or antibody-dependent cellular cytotoxicity independently reduced the potential harmful effect of plasma (odds ratio (OR) = 0.74, 95% CI 0.57-0.95 and OR = 0.66, 95% CI 0.50-0.87, respectively), whereas IgG against the full transmembrane spike protein increased it (OR = 1.53, 95% CI 1.14-2.05). Convalescent plasma did not reduce the risk of intubation or death at 30 d in hospitalized patients with COVID-19. Transfusion of convalescent plasma with unfavorable antibody profiles could be associated with worse clinical outcomes compared to standard care.


Subject(s)
COVID-19/therapy , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , COVID-19/epidemiology , Canada/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Passive , Intention to Treat Analysis , Male , Middle Aged , SARS-CoV-2/immunology , Treatment Outcome , United States/epidemiology , COVID-19 Serotherapy
2.
Trials ; 22(1): 323, 2021 May 04.
Article in English | MEDLINE | ID: covidwho-1273249

ABSTRACT

BACKGROUND: Convalescent plasma has been used for numerous viral diseases including influenza, severe acute respiratory syndrome, Middle East respiratory syndrome and Ebola virus; however, evidence to support its use is weak. SARS-CoV-2 is a novel coronavirus responsible for the 2019 global pandemic of COVID-19 community acquired pneumonia. We have undertaken a randomized controlled trial to assess the efficacy and safety of COVID-19 convalescent plasma (CCP) in patients with SARS-CoV-2 infection. METHODS: CONCOR-1 is an open-label, multicentre, randomized trial. Inclusion criteria include the following: patients > 16 years, admitted to hospital with COVID-19 infection, receiving supplemental oxygen for respiratory complications of COVID-19, and availability of blood group compatible CCP. Exclusion criteria are : onset of respiratory symptoms more than 12 days prior to randomization, intubated or imminent plan for intubation, and previous severe reactions to plasma. Consenting patients are randomized 2:1 to receive either approximately 500 mL of CCP or standard of care. CCP is collected from donors who have recovered from COVID-19 and who have detectable anti-SARS-CoV-2 antibodies quantified serologically. The primary outcome is intubation or death at day 30. Secondary outcomes include ventilator-free days, length of stay in intensive care or hospital, transfusion reactions, serious adverse events, and reduction in SARS-CoV-2 viral load. Exploratory analyses include patients who received CCP containing high titre antibodies. A sample size of 1200 patients gives 80% power to detect a 25% relative risk reduction assuming a 30% baseline risk of intubation or death at 30 days (two-sided test; α = 0.05). An interim analysis and sample size re-estimation will be done by an unblinded independent biostatistician after primary outcome data are available for 50% of the target recruitment (n = 600). DISCUSSION: This trial will determine whether CCP will reduce intubation or death non-intubated adults with COVID-19. The trial will also provide information on the role of and thresholds for SARS-CoV-2 antibody titres and neutralization assays for donor qualification. TRIAL REGISTRATION: Clinicaltrials.gov NCT04348656 . Registered on 16 April 2020.


Subject(s)
COVID-19 , Coronavirus Infections , Adult , Bisoprolol , COVID-19/therapy , Humans , Immunization, Passive , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome , COVID-19 Serotherapy
4.
Front Med (Lausanne) ; 8: 630982, 2021.
Article in English | MEDLINE | ID: covidwho-1082440

ABSTRACT

Background: Convalescent plasma is a potential therapeutic option for critically ill patients with coronavirus disease 19 (COVID-19), yet its efficacy remains to be determined. The aim was to investigate the effects of convalescent plasma (CP) in critically ill patients with COVID-19. Methods: This was a single-center prospective observational study conducted in Rio de Janeiro, Brazil, from March 17th to May 30th, with final follow-up on June 30th. We included 113 laboratory-confirmed COVID-19 patients with respiratory failure. Primary outcomes were time to clinical improvement and survival within 28 days. Secondary outcomes included behavior of biomarkers and viral loads. Kaplan-Meier analyses and Cox proportional-hazards regression using propensity score with inverse-probability weighing were performed. Results: 41 patients received CP and 72 received standard of care (SOC). Median age was 61 years (IQR 48-68), disease duration was 10 days (IQR 6-13), and 86% were mechanically ventilated. At least 29 out of 41CP-recipients had baseline IgG titers ≥ 1:1,080. Clinical improvement within 28 days occurred in 19 (46%) CP-treated patients, as compared to 23 (32%) in the SOC group [adjusted hazard ratio (aHR) 0.91 (0.49-1.69)]. There was no significant change in 28-day mortality (CP 49% vs. SOC 56%; aHR 0.90 [0.52-1.57]). Biomarker assessment revealed reduced inflammatory activity and increased lymphocyte count after CP. Conclusions: In this study, CP was not associated with clinical improvement or increase in 28-day survival. However, our study may have been underpowered and included patients with high IgG titers and life-threatening disease. Clinical Trial Registration: The study protocol was retrospectively registered at the Brazilian Registry of Clinical Trials (ReBEC) with the identification RBR-4vm3yy (http://www.ensaiosclinicos.gov.br).

SELECTION OF CITATIONS
SEARCH DETAIL